EEM-Theorie Cursus

In samenwerking met de Universiteit Twente organiseert Infinite eenmaal per jaar een 3-daagse basiscursus eindige-elementenmethode. Deze cursus levert u een uitstekende voorkennis voor de ANSYS gebruikers cursussen.

Ook als u al enige ervaring met ANSYS heeft kan deze cursus een nuttige aanvulling zijn op uw kennis van de eindige-elementenmethode. De lessen zullen worden verzorgd door een docent van de Universiteit Twente.

De lesstof wordt behandeld in 3 dagen. Er zijn 2 volwaardige practicum oefeningen met ANSYS en 1 demonstratie/practicum. De demonstratie en practica geven een illustratie van de lesstof en vormen tevens een afwisseling van de presentatievorm. Voor de cursus wordt gebruik gemaakt van een boek: M.J. Fagan, “Finite Element Analysis, Theory and Practice” en een aanvullend dictaat. Bij het practicum wordt een stap-voor-stap handleiding ter beschikking gesteld.

 

Dag 1

  • Algemene toepassingen in de praktijk
  • Directe afleiding elementsstijfheidsmatrix voor een klein vakwerk (verplaatsingsmethode)
  • Opstellen vergelijkingen op element niveau voor een staafelement
  • Opbouw systeemvergelijking vanuit de element-vergelijkingen
  • Staven in 2-D situaties m.b.v. rotatiematrix
  • Assemblage van de systeemmatrix en vector
  • Balkelementen, introductie van rotatie-vrijheidsgraden (oriëntatie)
  • Directe methode voor stijfheidsmatrix op basis van 2 knopen (4 vrijheidsgraden)
  • Rotatie van een balk in het 2D vlak met een rotatiematrix
  • Toevoegen normaalstijfheid (combinatie 2D buiging en staaf-element)
  • Rotatie 2D balk-element met normaalstijfheid
  • Loodrecht op het vlak belaste balkconstructies
  • Ruimtelijke balkconstructies, inclusief normaalstijfheid en torsiestijfheid
  • Onderscheid Ix en Iy en verschil tussen Ip en J

 

Dag 2

  • Spannings- en vervormingsleer 3D
  • Evenwichtsvergelijkingen
  • Principe van virtuele arbeid
  • Alternatieve afleiding voor een staafelement
  • Algemene afl eiding elementsmatrix en vector m.b.v. virtuele arbeid
  • Voorbeeld lineaire staaf
  • Interpolatiefuncties voor simplex elementen 2D en 3D
  • Natuurlijke coördinaten voor 2D en 3D
  • Vector-functies interpoleren vanuit de knooppunten
  • Modelleren van een probleem
  • Symmetrie-beschouwing
  • Vlakspanning, vlakvervorming en rotatiesymmetrie
  • Lineaire elementen voor vlakvervorming en vlakspanning
  • Lineaire rotatorische symmetrische elementen en lineaire volume-elementen

 

Dag 3

  • Hogere orde elementen voor 2D
  • Numerieke integratie (Gauß) (1D, 2D, 3D)
  • Postprocessing resultaten, extrapolatie naar knooppunten, contourlijnen
  • Foutschatting op basis van spanningssprongen
  • Invloed van elementgrootte en elementvorm

 

Trainingsdata

2017

Nederland